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1. Introduction. In this paper we consider a noncylindrical in time domain Q7 which
is given by
01 = {(z,),t € (to,T),z € Ot) C RN}. (1.1)

We assume that for any 7, & < 7 < T, the domain ¢, is homeomorphic to a
cylinder £ x {to,7) where Q has the classzca.l regularity in parabolic probiems We
also assume that Qr “shrinks” at P, that is

Orn{t=T}=P, (1.2)

where P is the point (z = 0,t =T} ; P is called the “shrinking point” of Q7.

Our concern is the regularity at P of solutions of va_.nous parabolic problemsin Q.
Among all papers devoted to the question of regularity of boundary points for parabolic
problems, let' us quote e.g. [7], [10] to [17], [22], [23]. For example, let us consider the
heat equation with diffusion coefficient K (positive constant) -

u~KAu=0 in Qp, 0 (13)

coupled with a boundary condition on the lateral boundary Y7 and an initial condition
on §){ts) . The point P is said “regular” for the heat equation {1.3) if for all continuous
boundary and initial conditions, the solution u of (1.3) is continuous at P . Otherwise
P is said “irregular”. _ _

In [12], L.C. Evans and R.F. Gariepy proved that the regularity of P depends on the
local form of Q@7 near P, Their criterium for regularity is based on the properties of
the fundamental solution of the heat equation, through the concept of thermal capacity.
Similar resuits are obtained for linear equations in divergence form with C'— Dini con-
tinuous coefficients in [13]. A sufficient condition for regularity for nonlinear uniformly
parabolic equations in divergence form can be found in [14].

Let us consider aga.m the heat equation (1.3). In radial symmetry, that is if for any
t, to <t <T, Qt) is a ball of center 0 and radius R(f), if the boundary condition
onzy depends on t and if the initial condition only depends on r = ||z||, I. Petrovsky
[22] studied the regularity of P for different classes of functions R(t). More precisely,
iet g{t) = log [log(T — t}|. It is proved in [22] that if '

T - t)R“z(t)g(t) - 00 {resp; 0),
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then P is regular (resp. irregular} and this is true independently of the diffusion
coefficient K. However there are domains Qr, such that the regularity condition
. depends on K. For example if

RY(t) = a(T — t)g(t)

with @ positive constant, then P is regular if and only if a > 4K (see [22]).

In the papers [20], [21] the above result (for the simple heat equation in radial sym-
metry) is used to get criteria of continuity or discontinuity at P for bounded solutions
(C < u(z,t) < 8) of more general parabolic problems, such as

— iy a(:};,t,u,V'ﬁ) + Bu == f in QTa
v=C on T, (1.4)
u;twta = Yo in ﬂ(ta),

(B,C constant), in general {(i.e. non radial} shrinking domains Qr as defined in the
beginning. It turns out that the regularity of solutions of such problems (1.4} depends
(in general) on the boundary conditions and also on the whole domain Qg (not only
on its local form near P ).

The comparison of (1.4) with a heat equation in radial symmetry is obtained by means
of symmetrization. This allows to compare for each ¢, |[u(t}) — C| to ||v(¢) ~ C|| where
v solves a heat equation. One gets a sufficient continuity {at P ) condition of «, for
(1.4) in general domains @+ and a sufficient discontinuity condition for a particular
form of (1.4}, namely u, - A{#)Ap(uv}+Bu = f in Qp for radial domains Qr. These
results are presented in Section 2.

In Section 3 the continuity result is generalized under convenient assumptions to the
problem

1y — div a(z,t,u, Vu)+
+ b(z,t,u, Vu)u + d(z,t,u, Vu) = h(z,t} in @7,

w=C on Iy, (1.5)
Ulemy, = up in £2{Lp).

Let us finally rema.z‘l-( that, since for the heat equation the continuity (discontinuity) at
P strongly depends on the diffusion coefficient , then for a general nonlinear problem
the continuity strongly depends on the upper and lower bounds of the solution itself.

Moreover for given initial and boundary data, the continuity shall depend, in general,

on the whole domain and not only on its local form near P. This will be illustrated in
Section 4 for a generalized nondegenerate porous media equation (see [21]).

Let us also stress that the above results can be applied to the homogeneous Dirichlet
problem for some classes of degenerate parabolic equations, such as the generalized
porous media equation. Roughly speaking the results on continuity for the heat equation
which do not depend on the éxﬁus1on coeflicient extend to the degenera.tc equation (see
Sect.5 and [21]). : '

2. Basic notations and statement of the comparison res'uli:s We begin by
recalling here the definitions and main properties of rearra.ngemcnts which will be used
later on to construct the “symmetrized” problem.
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For € (Lebesgue) measurable subset of RV and {c_ : £} - R measurable, let us
denote [f}| the measure of [}] and k* : [0,{8)]] ~+ R the monotone nonincreasing .
rearrangement of k:

k*(0) = ess sup k(< +w)s |
k* (|Q]) = ess inf k(> —o0), (2.1)
k*(s) = Inf {0 € R;Ik >8] <8}, s €(0,i2)

(here |k > 8] is the measure of {z € Q,k(z) > 6} ). We denote by 2 the ball of RV,

centered at the origin, having same measure as I
fi={seRYane)" < 0]}, | (2.2)
where ay is the measure of the unit ball in R¥ , and we define £:0 R by

I * N .
k(z) = k (aN ™). (2.3)
For the usual properties of rearrangements, the reader is refered to (e.g.) [18]. In

particular it is classical that a function k : @ —» R and its rearrangements &* and k&
are equimeasurable:

VOER, k>0 =k >0 = j
| -

which implies that for every Borel function F which is bounded above or below

e>
k= 6] = |k = 0] = [k

fF k)de = Glﬂlp(k*)d;mfﬁ;‘ (¥) d=. (2.4)

 We also recall the Hardy-Littewood inequality

i} Y
fkfdzgj k*t’*ds:/:_ktda (2.5)
£ 0 fi '

(for k in LP(R), £in L¥(Q), 1<p< o, (1/p)+ (1/0') = 1) and the Polya Czegs

inequality _
. i g\ 2 B o
/ 1[Vklrdzm f Naka-#%) g < / IVE|? dz (2.6)
a 0 ' ds a '

for & in H}(Q), k > 0.
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~ Now let us state precisely the Dirichlet problem we consider in the foliomng, together
with the required assumptions :

Lu=uy ~diva(z,t,u, Vo(u))+ Bu = f

in @r = {{z,thta<t<T,2 E Q(t)},
w=ConZ, = {{a,t),te <t < 7,2 € 80)},
o=, = uo{x) in O{e).

2.7)

Here B and C are constants, V (respectively div) denotes the gradient (respectively
divergence) with respect to z and Q.,a,yp, f,up satisfy (throughout the paper} the
assumptions

(H.1) (i) the domain @, can be transformed by a inversible C* mapping into a
cylindrical domain 2 x(#g,7), {1 having the usual regularity required in the parabolic
problems ;

{(ii) a: &r xR x RN o RN (defined a.e. in Q, and everywhere in R x RY ) satisfies
the uniform parabolicity condition

ALEN? < alt,m) €] < a(z,t,n,€) - € < Bln) €I (2.8)

{ A positive constant, 8 bounded on bounded sets) a.e. in @, and for every n € R
and £ € RV ;

{ii1) v : R = R is a strictly increasing C* function such that ¢’ >0 ;
(iv) f e L (Qr) , uo € L™ (Qto)).

In this Section, we are concerned with sub and supersolutions of problem (2.7), which
we define below. _

DEFINITION 1. A function v : @, — R is called a regular subsolution {respectively
supersolution) of (2.7) i

a) u € L®(Q,),Ve(u) € I ()Y (ie. VueI?(Q)" h
uy and diva{:,u, Ve{u)) € LI(Q,»)

b) -
Lu<fin Q,

u < C'_ on I, _

(respectively if all the above mequahtxes are reversed). Obwously a regula.r solution of
(2.7) is both a regular sub and supersolution.

Now let us define the “syrnmetrized problem”
| { Lv=1v, — A(t)Ap(v) +Bv=f |
in &, = {(:c,t),to <t<T,z€ ﬁ(t)} ,

< N : -
v=C on Y= {(:c,t),to <t<rm z€ 3Q(t)}l ,

\ ”itmto - a‘l; m ﬁ(t(l)s
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where A(t) will be precised hereafter, ug, ﬁ(t) are defined from wug, §2(¢) according
to the previously given definitions (2.1) to (2. 3) and where f is the rearrangement of

f with respect to z : for any fixed t, f( ) = f( ) . Since (é,-, ~) are special forms

f (Qr,L), the regular sub and supersolution of (2.7 7) are well deﬁned according to
Deﬁmtlon 1.
For k radial, defined in = Q , let us denote

E(s) = k(z) for s=an|z|N. (2.9)

For k(t) radial defined in ﬁ.(t) , We write

k(s,t) = k(t)(s)-
Finally we define the “admissible radial functions”

DEFINITION 2. A radial function k defined in Q. is said admissible if for any fixed
t, it is differentiable with respect to the_radius at the origin or if, £ being defined as
above, the distributional derivative of ¢(k) is a function defined almost everywhere and

We remark that the last inequality holds true if (e.g.) there exists a small neighbor-
hood N(t) of 0 such that

e either k(t) is nonincreasing with respect to the radius in N(t),

e or V pok(t) € L*(N(t)) - since lim s>~ a 2 o(k) = imN~ laN’_"r.s]_ (?5)
= 0-.

Remark 1. In the above definition k is supposed to be radially symmetric but non

necessarily monotone. However if k is monotone nonincreasing with respect to the
radius, then k coincides a.e. with k* and k is admissible.

At last we can state the comparison result obtained in [20]

THEOREM 1. Assume u is a regular subsolution of (2.7) in the sense of Definition
1, with w > C in Q.. Let S be such that w < S in Q, and consider (2.7) with

A(t) = Inf{a(n,t),n € [C, S]} (see (2.8)). Assume v is a supersolution of (Eﬁ which
is regular, radial and admissible in the sense of Definitions 1 and 2. Then one has

a.e. tE€ (to,7),Vp€ [1,00],lu(t) - Clizraey) < "‘”.(t) C”Lp(n(t)) (< o).

Remark 2. In the examples, one has often a priori estimates for the solutions, so that
Theorem 1 can apply also for solutions provided an upper bound is known.

We can derive lower estimates for ||u(t) — C||, w1th u supersolution of (2.7), under
the following reinforced assumption

(H.2) o (H.1) holds together with
o Q) =Q(t), Vte€ (to,7),
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o a(z,t,7,&) = A(t)¢ for a given function 4 > A { so that Lu = Lu),
e feC°(@r), (w0 €C® (ﬂ-(to)) , f and uo radially symmetric, monotone

nonincreasing with respect to the radius and such that
w2 C on 0L}, f2BC in Q..

Then we can state the following :

THEOREM 2. Assume that (2.7) has the particular form given by (H.2) and that
4 is a radial monotone nonincreasing along radii regular supersolution of (2.7} (see
Definition 1). Assume v < S, define

M' = Max{¢'(n),C <0 < S}
and let w be the solution of the following heat equation
Hw =w;, — A M Aw+Bw=f=§ in Q, =Cr,

w=Con I, = 5, {2.7)

wtgzgo — g Ee in Q(ta) P ﬁ(to).

Then a.e. t€ (to,7),¥p € (1,00, jw(t) — Clipraqy) < 14t} — Clipeaey) (< +oo).

Let us remark that u is bounded below in @, by C by assumption (it is nonin-
creasing along radii} and that the assumption (H.2) on f, ug garantee that also w is
radial, monotone nonincreasing along radii and w > C in @-.

3. Application to the continuity of (sub-)solutions at a shrinking point (gen-
eral result). Let T > £5. In what follows we assume that for any v, to <7 < T,
the domain @, used in (2.7} satisfies {H.1.i) and we consider

U e ,%r= |J Zr (3.1)

to<r<T to<r<T
We assume that Qg “shrinks” at F = (0,7}, that is

Crnft=T}=P=(0,T) B (3.2)
and we consider ﬁrobi_em (2.7)in @7 insteadl of Q,,thatis |

t.:u = Uy — div G(x_, i, V‘P(u)) + Bu = f in Qr, . .
v=C on Y, : | | o (3.3)

Ulemty = vo in §(fo);
where ¢, %o a.rea.sm{H 1) and where now fGLl(QT) and a: QTXRXR‘N—}RN _

satisfies | -
- Ailﬁii < aft, ) JEI? < alz,t,m,6) - € < B(n) Iif” | (3.4)
a.e. xGQT,forevery n€R and £ € RV,
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For a function u : @r - R, the respective notions of “admissibility”, “regularity”,
being “sub (or super)-solution for (3.3)” mean that, forany 7, to <7 < T, ulg i
respectively admissible, regular, sub (or super)-solution for (2.7) in the sense given in
Section 2.

Moreover we will say that a function wu, which is regular in Qr in the above sense
and satzsﬁes ulg, = C, is continuous at tim shrinking point P if

esssup ||u{t) — Ollp=(ay — 0 ' ) (8.5)
To2h<t<T—h e

when h goes to zero.
Clearly Theorem 1 has applications to the continuity of (sub-)solutions of {3.3). Let
us define - _ -
Lyv=v,— A(t})Ap{v) + Bv = f in Qr,
v=C on o, (33)
V)sms, = Up in £ {to).
From Theorem 1 applied in Qr_; , we get _
COROLLARY 1. Assume u is o regular subsolution of (3.3) with C < u < § in
Qr. Let A(t) = Inf{alt,n),n ¢ [C,8]}. As soon as (3.3) has a regular, radial and

admissible supersolution which is continuous at P (in the sense of (3.5)), then also u
ts continuous at P.

From Theorem 2, one gets also a discontinuity result, Briefly speaking, in radial
symmetry and with a(z,t,9,£) = A(t)}¢, discontinuity for w implies discontinuity
for u.

The same method can be applied to slightly different equations such as (1.5} in Q7,
where Qr is as before, shrinking at P y @, Ug are as before and

[bz,t, 7,6} < B(’i); :
Id("s t, 7?10' < D(’?)a . (H.if)
Ih(z, t)| < H, |

for a.e. (z,8) € Qr,every n €R and £ € RN, w1£‘31 B,D bounded on bounded
sets, H positive constant.

Deﬁmng regular subsolutions of (1.5} as above,we get

COROLLARY 2. Assume (H.1'), assume u is a regular subsolution of (1.5) such that

C<u<S8 in Qr ond let the function A be given by A{t) = Inf{a(t;n),n € [C,S]}.

Then u is continuous at P as soon as P is regular for the heal equation
we ~ A(t)Aw = =0 in Qp. - (3.6)

Let us remark that considering —u instead of u, the above corollary hoicis also when
u is a solution of (1.5) such that « < C in Qr..

Moreover if the operator M possesses a comparison principle, one can give continuity
results of the type above also for the solutions corresponding to general continuous
boundary data (x = ¢ on D), simply constructing sub- and super-solutions which

satisfy Corollary 2.
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4. The nondegeherate porous media equation. As an application of the previous

results we consider the nondegenerate porous media equation in @r with ¥ € C3(R),

¥'(n) >0 for neR:
- Ap{u)=0 in Qp, _
v=C on Zr, | - (4.1)
iz, = U in (o)

To focus the attention on the shrinking point P, we assume u to be a classmaf
solution of (4.1). For example we assume

Ug & c (Q( )) s uglaﬂ.{ta) = C C < Up < S . (3.3)

Then (4.1) has a unique solution v andforany v, o <7< T, ui is a classical
solution which is regular in the sense of Definition }. Moreover ¢ < u < Sin Qr.
Let us define

K1 = K1(C,8) = min(¢'(n), C <5 < 5) >0,
K; = K,(C,8) = max(¢'(n), C <9 < 8) > K;.
Then Theorem 1 applied to the present case gives us the following result:
THEOREM 3. Assume (H.3). Let v be the solution of
~-KiAv=10 in Qr,

v C on M,

(4.2)

v!:mgo 36{3 in ﬁ(f.o),

with Ky as in (4 2), Q(to) defined from Q{ty) as above and Or, Sr defined by
symmetrization in an obvious way. If v is continuous at P, then so is the solution u

of (4.1).

Since O is radially symmetric, we can use the results of Section 2 and obtain a
sufficient condition for the continuity of » at P, depending only on the radius R(t)

of §}{t), obviously defined as |[}(t)] = anR(t)" .. This gives
COROLLARY 3. Assume (H.3). Let g(t) = log llog{T — t)].
(3) I, with K, defined in (4.2},
R (t) < 4K, (T —t)g(t) Vi, 40 <t < T, | (4.3)

then the solution u of (4.1} is condintous at P .

(ii) This is the case- (for any C and § ) if
(T —t)g(t)
1/'1' R(t) _
In the ra.dxaliy symmetric case, dlscontmmty results can be ohta.mcd by applying
Theorem 2 . We assume that '

Q) = ﬁ(t},Vt,to <t<T o | (H.4)

= 40 (4.4)

and we consider that _
: uo = is as in (H.3). (H.5)

Then the solution u of (4.1} is also radlaiiy symmetric, monotone nonincreasing with
respect to the radius (v = %) and we can apply Theorem 2 to u, getting the following
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THEOREM 4. Assume (H.4), (H.5). Let w be the solution of
~K;Aw=0 in Qr=0Or,
w=C on Xp= :T:T,
W=y, = Uo = Up in NQ(to) = ﬁ(to) ,
with K» as in (4.2). If w is discontinuous at P, then so is the solution u of (4.1).

Again by means of the results of Section 2 we have

COROLLARY 4. Assume (H.4). Let C < S be given constants and let K, = K,(C, S)
be given by (4.2). -
(i) If, for some 1> 1,

R2(t) > 4\K»(T — t)g(t),Vt,to < t < T, (4.5)

then there ezists uo satisfying (H.5) such that the corresponding solution u of (4.1)
ts discontinuous at P .
(i) If
o L —1)g(t)
LT L HE(E)
then, for any C and S, there ezists to < T (close enough to T ) and uq satisfying
(H.5) such that the corresponding solution of (4.1) is discontinuous at P .

=0, (4.6)

Hence for domains satisfying (4.4) or (4.6) we have the same result for (4.1) as for
the heat equation (for any diffusion coefficient).

On the contrary let us stress here the fact that there are classes of functions R for
which the continuity (or discontinuity) of u dependson C and S, that is of the bounds
of uw. While for linear problems one can speak of regularity of a boundary point for an
equation (independently of the boundary and initial data), for nonlinear equations one
has to speak of regularity for a given boundary value problem. Moreover one can see
that, also when the boundary value C is fixed, the continuity of w at P can strongly
depend on the upper bound of ug. For example, let us consider a domain Qp for
which

R*(t) = 41+a)(T -t)g(t), t<T, (4.7)
where a is a given positive constant.

To fix the ideas consider problem (4.1) with C' =0, R(t) given by (4.7) and assume
that 9 satisfies the following condition

¥'(0) > 1 + a and there exists a positive number m
such that ¢'(m) =1, ¥'(n) > 1 for 0 <5 <m, ¥'(n) <1 for n > m.

Remark that the boundary value C =0 is such that ¢'(0) > 1+ a, so that the point
P would be regular for the heat equation with diffusion coefficient ’(0). For (4.1),
it turns out that if the initial datum is small enough, then u is continuous at P, but
without the above restriction, one can construct explicit discontinuous subsolutions and
prove by the way the existence of discontinuity solutions. One can give also examples
of different domains which coincide around P for which one has either continuity or
discontinuity, with same boundary and initial data. Precisely we have (see [21]) :

(4.8)
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PROPOSITION 1. Assume (4.7), {4.8). Let 0 < & < m be the smallest root of

Pp{§)=1+a. :

(i) If § <4, then every solution of (4.1}, (H.3) with C =0 is continuous at P.

(i) There ez:zst to and up satisfying (H.5) such that the corresponding solution of
(4 1), (H.4) with C =0 is discontinuous at P.

(iil) For ug as tn point {ii), one can have either continusly or dtscontmmty at P for
the solution of (4.1) with C =0 and initial datum uo for different radial domains
which coincide in a neighborhood of P . :

Let us remark that the value ¥'(m) = 1 is immaterial : it can be changed provided

R(t) changes accordingly, substituting ¢'(m)+a to 1+a. More important is that the
above proposition (see (iii)) implies that in general the regularity of a shrmkmg point
P is no longer a local property as it is for linear equations.

5. Two classes of degenerate parabolic equations. In the same context of sec-
tion 4 , let us consider now the nonnegative bounded solutions of the following two
classes of equations

~AP(u) =0 in Qp, - (5.1)

where ¢ € C*[0,00) NC*{0,00),9'(s) > 0 for s > 0, ¢'(0) = 0 (2 model is obtained
with (s} =s™, m>1)}and

v —vAv+v|VoP =0 in Qr, (5.2)

where v is a given constant.

Both equations {5.1) and (5.2} are of degenerate parabolic type since they lose their
parabolicity at points where u or v vanishes. Therefore one has to consider weak
solutions - see [1] for a survey on equation {5.1) and [4] to [8], for equation {5.2). A
particular weak solution can be comstructed as a limit of a monotone nonincreasing
sequence of positive classical approximating solutions and to this (maximal) solution
we will refer hereafter.

We consider here the case of homogeneous boundary data, with 0 < ug(z) < 5 or
0 < wo{z) < § (and hence 0 < u(z,t}) < § or 0 < »(z,t) < §). Let us stress the fact
that in general the results obtained for this problem do not apply to general continuous
boundary data as can be seen with an explicit counterexample (see [21]}.

Applying the results of the previous section to the classical a.pprox:matlons and then
passing to the limit, we get results of the following style:

THEOREM 5. Let g(t) =logl|log(T —t)|. If R(t) s such that

(T —t)g(t)

T RR(E) = oo,

then any weak solqtiﬁn of (5.1),(5.2} is continuousat P,

Let ut remark that this both explains and generalizes the results of [7]. In symmetrical
domains, we can also give discontinuity results for equation (5.1} using Theorem 2 :

150 .



THEOREM 6. Let g(t) log i}og(th)l: K, = Kz(S) = max{¥'(n),0 <n < §}.

If

R¥(t) > K(T — t)g(t)

for K > 4K, , then there exists %o = %o, 0 < wup < 8 such that the viscosity solution
of equations (5.1),(5.2) in Qr = Qr is discontivous at P.

Let us remark that in nensymmetrical domains it is not possible to give general
discontinuity conditions not depending of the particular form of (). In fact equations

(5

.1), {5.2) have finite speed of propagation, so there can be subsets of Q7 where u = 0

depending of the form of () (and independently in general of its measure).

Remark 8. Let us remark that the continuity result of this Section applies also to the
porous media equation with source or absorption as long as we deal with nonnegative
bounded solutions.
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